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Abstract. Employing a particularly suitable higherader symplectic integration algorithm, we 
integrate the one-dimensional nonlinear ScMinger  equation numerically for solitons moving 
in extemd potentials. In particular, we study the scattering off an interface separating two 
regions of constant potential. We find rhat Ute soliton can break up into two solitons, eventually 
accompanied by radiation OF non-solitary waves. Reflection coefficients and inelasticities are 
computed as functions of the height of the potential step and of its Steepness. 

1. Introduction 

Recent years have seen a considerable growth in the interest in nonlinear partial differential 
equations with soliton solutions. In particular, the nonlinear Schriidinger equation (NLSE) 
and its variants appear in problems drawn from disciplines as diverse as optics, solid state, 
particle and plasma physics. There, the NLSE describes phenomena such as modulational 
instability of water waves [I], propagation of heat pulses in anharmonic crystals, helical 
motion of very thin vortex filaments, nonlinear modulation of collisionless plasma waves [2], 
and self-trapping of light beams in optically nonlinear media 13-51, In all these problems, 
the main interest is in the fact that the NLSE has soliton solutions. These are solitary waves 
with well defined pulse-like shapes and remarkable stability properties [6]. 

A great deal of current interest is directed to the question of bow these states behave 
under the influence of external perturbations. These can be of various forms. We shall 
limit ourselves to such perturbations which can be described by potentials. They preserve 
the Hamiltonian structure of the NLSE 121, but not its complete integrability. Other types 
of perturbation which are also Hamiltonian are obtained when either the coefficient in 
the kinetic term (the ‘mass’ in the quantum mechanical interpretation) or in the nonlinear 
term are made spatially non-constant. Such inhomogeneities have indeed been studied 
more intensely than the ones we shall study below, since they are more relevant for the 
transmission of pulses through junctions in optical fibres [4,5,7-91. 

More precisely, we shall consider only potentials which are constant outside a finite 
interval (we shall only consider the case of one spatial dimension). But wc allow different 
values V, for x -+ &too, thereby mimicking the effect of an interface between two media 
in which the solitons have different characteristics. We study initial conditions consisting of 
one single soliton. In general, we have to expect that this soliton will not just be transmitted 
or reflected. There might also be inelastic scatterings where it breaks up into either several 
solitons or non-solitary waves, or both. 
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This problem has been studied previously by several authors. While perturbative 
approaches were used in [3, 4, 5, lo], straightfonvard numerical integrations were made in 
1111. Both approaches showed that the soliton behaves just like a classical particle if the 
force created by the potential is sufficiently weak. This is to be expected, but the problem 
of what happens when the force is strong was left open for a simple potential ramp (the 
potential considered in [5] was more complicated). 

One purpose of the present paper is to close this gap by means of simulations. 
Another purpose is to show the usefulness of higher-order symplectic integration 

algorithms. As we have already mentioned, the NLSE is a Hamiltonian system. Thus, 
it is natural to apply to it integration routines which were developed during the recent years 
and whose main characteristic is that they preserve the Hamiltonian structure 112-141. The 
latter is not true, e.g. for standard methods such as Runge-Kutta or predictor-corrector. 
Such ‘symplectic’ integrators (the simplest of which is the well known Verlet or ‘leap- 
frog’ algorithm) have been applied already to the linear [15-181 and nonlinear [19-221 
Schrodinger equations. 

The most popular algorithms of this type are split-operator methods, They depend on 
the Hamiltonian being a sum of two terms A and B ,  each of which can be integrated 
explicitly. Then one uses the Baker-Campbell-Hausdorff theorem to approximate ei(Ats)‘ 
by a product of factors einrAt and eiBkB‘, where @k and @k are real numbers satisfying among 
others ,& = 1. The error is then given by higher-order commutators of A and 
B .  In particular, we shall apply a fourth-order method due to McLachlan and Atela [23] 
which is applicable if one of the third-order commutators vanishes identically. We shall see 
that this method should be applicable to OUT problem, and that it is indeed numerically very 
precise, indicating that the McLachlan-Atela method is the method of choice for a wide 
class of problems. 

ak = 

2. The NISE soliton solution 

Using appropriate units, we can write the NLSE as 

where V ( x )  is the external potential. We shall use for the latter a piecewise linear ansatz, 
with V ( x )  = 0 for x c 0, V ( x )  Vg > 0 for x > xg 2 0, and linearly rising for x between 
0 and XO, 

0 x C O  

V ( x )  = XVOJX, 0 s x  < x g  (2) 1 Vo x > x o .  

We call the negative x-axis region I, while region II is the region x 0 (where V ( x )  > 0). 
We study scattering solutions where the incoming wave consists of a single soliton 

arriving from region I. The outgoing wave will then in general be a complicated 
superposition of solitons and non-solitary waves, in general moving both into regions I 
and II. The interesting questions are how many solitons will leave the scattering region and 
with what energies, how much of the total e n e r a  is transmitted and reflected, and how 
much of it goes into nonsolitary waves. 

For a constant potential VO the soliton solutions of ( I )  form a two-parameter manifold 
(apart from translations). Taking as parameters the velocity U and the amplitude a .  these 
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solutions read [24]  
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We denote the velocity of the incoming soliton as UO. Using a suitable rescaling of x ,  t and 
Y, we can always choose its amplitude as 

Among the infinitely many conserved quantities (for V ( x )  = constant!) the following 
three are of particular interest: 
the normalization 

= 4, without loss of generality. 

(4) 

the energy 

and the momentum 

For the soliton given by (3), N = 20, P = U N ,  and E = ( u 2 / 2  - a Z / 6 ) N  + ( V ) N ,  where 
the average over V ( x )  is taken with weight ci IQIz as indicated by (5). 

For a slowly varying V ( x )  (which implies xo/Vo >> 1 in our case), the amplitude is 
approximately constant and the soliton moves like a classical particle with mass m = 2a 
in an external potential m V ( x )  [IO]. The mass of the incoming soliton is mo = 1 with 
our normalization. Another limit case where the soliton behaves like a particle is that of 
VO << KO, where KO = u;/2 is the kinetic energy of the incoming soliton. 

It is easily seen that N and E are also conserved for non-constant potential V ,  
while this is not hue for P .  Denoting by Ni, i = 1,II the normalization in region 
i, we have thus N , , , ,  + Nn.o.r = N,,in = 1. Similarly, energy conservation gives 

Conservation of N and E poses restrictions on the final state. In general, they do not 
seem to be very stringent. Assume, for example, that the final state consists of two solitons 
moving in opposite directions, (a, U) moving into region I and (b ,  w) moving into II. Then 
we find that 

(7) 
This does not imply, in particular, a lower bound on uo since b and U can be arbitrarily 
small. Similarly, for any initial soliton we can have any number of outgoing solitons, 
provided there is at least one reflected and one msmitted soliton. Conservation of N and 
E is more stringent if no or all solitons are reflected. For instance, if the final state consists 
of a single transmitted soliton, then its velocity is 

E I ~ I  + E~~.out  = E1.i. = (U: - h)P 

a + b = f  ut = ab + 2(au2 + bw2 + 2bVo).  

un,-, = J-- U; - 2 V Q .  

This conforms with the general statement that the soliton behaves like a classical particle 
with m = 1, and shows that there is no transmission if uo .-z (i.e. KO < VO) and 
xo >> VO. It was verified numerically in [ I  I]. These authors concluded indeed that solitons 
impinging on a potential step behave like classical particles. It was mainly this claim which 
stimulated our investigation. 
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3. Symplectic integration 

The NLSE is a classical Hamiltonian system with Poisson bracket 
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( Y W ,  WY)} = - Y) (8) 

It 7 {Y, HI =‘HY (9) 

and Hamiltonian H = E .  This implies in particular that it can be written as 

where the linear (‘Liouville’) operator ‘H is defined as ‘H . = [ .  , H I .  Split-operator methods 
can be applied by splitting ‘H = ‘T+ V ,  where 7 and V are the Liouvilleans corresponding 
to iJdxla,Y12 and Jdx(-$[YI4+ VIYI’), 

(10) 
1 TY = -a:* VY = i(lYlzW - VY). 

In a paper by McLachlan and Atela [Z], a fourth-order algorithm was introduced 
which minimizes the neglected fifth-order terms in the Baker-Campbell-Hausdorff formula 
for Hamiltonians for which 

(11) 

This applies obviously to Hamiltonians with T = $ ( p , M - ’ p ) ,  V = V ( x ) ,  with M a 
constant mass matrix and {si, pk] = Si*, since there each commutator with V acts as a 
derivative operator on any function of p .  In [17] it was shown that this algorithm can also 
be applied to the linear Schrodinger equation where it gives better performance than the 
general fourth-order algorithm (121 which does not take into account this special structure. 

Although the argument is less straightforward in the present case, it is not too hard to 
see that (11) also holds there [221. Let J”(IY~~ ,x )  and g(lY12.x) be arbitrary functions 
with finite first and second derivatives. Then one finds 

2 

I1V, VI, VI, VI = 0. 

[ dx iaxw2g(iwz, x ) ,  [ dy f ( i ~ 1 2 ,  y) = i dx I S  - Y*\Y,,)gf‘ (12) 

where f’ = af/alYzI, and 

(13) 
Since the last expression is a functional of IYla only, its Poisson bracket with J d y f  
vanishes identically, QED. 

The coefficients ffk and & for the McLachlan-Atela method are listed in 123, 171. Our 
implementation involves a spatial grid with Fourier transformation after each half step [17]. 

Since ‘T and V both conserve the normalization exactly, N should be conserved up 
to round-off errors. This was checked numerically, relative errors typically were of order 
lo-’’. Energy is not conserved exactly, and its emor was c after an evolution time 
I = 300 with an integration step Ar = 0.005. The precise value depended of course on the 
parameters of the soliton and on xo. It was checked that the algorithm is indeed fourth order, 
and is more precise than the general fourth-order symplectic [12J and the leapfrog (second- 
order symplectic) algorithms. We also tested two other discrete Hamiltonian integration 
schemes which where examined in [26]. They both show the same qualitative behaviour, 
but the discretization of the Laplace operator requires smaller time steps for the same spatial 
discretization width. All this demonstrates the advantage of the McLachlan-Atela algorithm. 
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4. Results 

During the simulations we measured normalization N i ,  energy E, and momentum Pi in 
each region ( i  =I, II) separately. The derivatives of W and W* were, of course, computed 
in Fourier space, as this is much more precise than taking finite differences in x-space. 

Since we have two conserved quantities, we can define two sets of transmission and 
reflection coefficients. We call them TN, RN and TE. R E ,  

and 

. TE . 

In addition we registered all local maxima of IW(x)lz with lW(x)l2 z 1/3000. 
Since our model involves three free parameters (VO,XO,  VO). it is impossible to present 

results exhaustively. We did a large number of simulations with different parameter values, 
but we present only a few of them here to illustrate the variety of the scenarios. 

Our numerical simulations confirmed the prediction that the soliton behaves as a classical 
particle if xo/Vo >> 1, and if VO << KO. The same is true also if xo = 0 and V, = CO, i.e. if 
the potential acts like a hard wall. In that case, an exact solution of the NLSE with boundary 
condition Y Ira = 0 and correct initial conditions in region I is provided by a state with 
two (interacting) solitons with opposite velocities and phases but equal amplitudes [ l l ] .  

While the above essentially just checked the correctness of our integration routine, a 
less trivial result is that we confirmed the observations of Nogami and Toyama [ 111 for 
their parameter choice xo = 0, uo = 0.2, VO x KO. But we did nor verify their claim that 
this is the typical behaviour. Instead, the soliton typically breaks up and does not behave 
like a classical particle. 

In general, after the soliton hits the potential ramp, we found typically more than a 
single maximum of lY(x)\. Moreover, the heights of these maxima in general were not 
constant in time, though they moved with practically constant velocities (see figures 1, 
3, 5, 7). Instead, they showed often very marked oscillations (figures 2, 4, 6, 8) which 
were damped in all cases. Such damped oscillations result typically from superpositions of 
solitons with non-solitary waves [27]. We checked that a superposition of a soliton with a 
Gaussian wavepacket gave essentially the same patterns. 

In the following we shall only show results for uo = 0.8 although, as we said, we had 
made runs also with different vo and with similar results in general. 

Figures 1 and 2 show the case where the potential is a step function (xo = 0) and the 
kinetic energy (KO = 0.32) is larger than its height VO = 0.3. Classically one would expect 
the soliton to move into region I and to propagate there with a reduced speed. But our 
simulation shows that it breaks up into two solitons with roughly equal heights and with 
velocities U = -0.588 and w = 0.395. About half of the normalization and three thirds 
of the energy are transmitted (TN = 0.527, TE = 0.712). Inserting these numbers into (7), 
we find perfect agreement (discrepancies are 5' 1%). This indicates that radiation in the 
form of non-solitary waves is small in spite of the wiggles seen in figure 2. More precisely, 
we compared our data with 1271 by assuming that the transmitted wave is a single solitary 
wave immediately after leaving the interaction region. We find perfect agreement if we 
assume that this wave has exactly the same shape and width as the incoming soliton, but 
an amplitude reduced by a factor 0.728. Thus, at least for these parameter values, the main 
effect of the interaction on the transmitted wave is simply a reduction of amplitude. 
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Figure 1. Time evolution of local 
maxima of lqlx for a soliton with 
incident velocity uo = 0.8 which is 
scattered at a potentia! step with xo = 
0 and height Vo = 0.3 = 0937Ko. 
The calculation was done on a lattice 
with 4096 sites, discretization width 
Ax = 0.2 and integmion slep At = 
0.005. The Imr parameters are the 
same for the next figures. 

Figure2. limeevolutionoffhe height 
of the maxima shown in figure 1. 
The highest curve belongs to the 
" i n e d  soliton. and the second 
highest to the reflected soliton. The 
other maxima presumably are due 
to the superposition of non-solitary 
W W S .  

Figure 3. l ime evolution of (PIz 
- .  , ,* shown in a three-dimensional plot 

with Vo =0.34 = 1.063Ko. 

The situation where the potential step (VO = 0.34, xo = 0) is higher than the kinetic 
energy KO is plotted in figures 3 and 4. Here one would expect classically that the incident 
soliton is completely reflected back into region II. But once again the behaviour is quite 
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Figure 4. Same as figure 2, but for 
Vo = 0.34 as in figure 3. Now the 

soliton. 
0 100 m 300 400 500 600 700 800 highestcurvebelongstothereflected 

0.m1 
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300 I I I I I I I - 
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-3w - 
4433- 
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0 100 m 300 4W 5M, 600 700 800 Figures. Sameasfigure 1,butfor 
Time f xo = 3 and Vo = 0.35 = 1.094Ko. 

I- 

F-: 
n 
5. 

Figure 6. Same as figure 2, but 
with xo and Vo as in figure 5. The 
highest curve belongs to the reflected 
soliton and the second highest to the 
uanscnined soliton. Theother maxima 
ace ride maxima, presumably due 

o 100 200 300 400 500 6M) 700 8w to the superposition of non-solitary 

0.001 

- O ' O ' W  T h e  i waves. 

different, the soliton splits up into two. The transmitted soliton is not as high as the reflected 
soliton (TN = 0.373) and therefore much wider, but still carries more than half of the initial 
energy, TE = 0.571. As we increase VO further, the transmitted soliton rapidly shrinks. It 
becomes unobservable at VO c 2K0, where the soliton is practically completely reflected. 

Let us now study positive values of xg, i.e. potential ramps with finite slopes. Our data 
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Figure 7. Same as figure I ,  bur for 
xo = 25 and Vo = 0.35 = 1.094Ko. 

Figure 8. Same as figure 2. but wirh 
xo and Vo as in figure 5 .  

show unambiguously that this slope has a strong influence. If xo is of order 1, the soliton 
still breaks up as described above (figures 5,6) ,  with even larger oscillations and even more 
‘dirt’ than for xo = 0. Flattening the potential ramp further but leaving its height constant, 
the soliton finally travels along the classically expected trajectory (figures 7, 8): in the ramp 
region it sees a constant force and hence moves on a parabola; it is reflected (transmitted) 
for vo > KO (VO .< KO). 

This dependence on the slope of the ramp is seen very clearly when plotting the energy 
in region II as a function of time, see figure 9. While the asymptotic state is reached very 
quickly for steep potentials, this evolution takes very long for gentle slopes. If xo >> 1 
(corresponding to a width of the soliton (< X O ) ,  the energy change is sudden when the 
soliton crosses the point x = 0. 

Finally, the dependence of the transmission coefficients on xo are shown in figure 10. 
We see that they are not monotonic, with the non-monotonicity more pronounced for TN 
than for TE. This is an unexpected effect which we do not know how to explain. The fact 
that T, c TE for all xo is less surprising. 
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Figwe 9. Time evolurion of €11. i.e. 
the energy in region 11, for different 
V a l W  of xo. FW all CUNes. ug = 0.8 
and Vo = 0.35 = 1.094Ko. 

Figure 10. ?%e "ission coeffi- 
cients TN and TE for different values 
of xg. For all clwes UQ = 0.8 and 
Vo = 0.35 = 1.094Ko. 

5. Summary and conclusions 

In this paper we have applied an optimized fourth-order symplectic integrator to the 
scattering of NLSE solitons from an external potential. The integrator is optimized in the 
sense that it takes into account that the kinetic energy is bilinear in Yx. It was found 
to be more precise than the general fourth-order symplectic integrator. We found that, in 
general, solitons break up when hitting a potential threshold, in contrast to recent claims. 
The complexity of the outgoing state depends on the parameters of the potential and of the 
soliton, but most frequently the soliton breaks into two, with rather little radiation. 

The MSE can be considered as a special case of the complex Ginzburg-Landau (CGL) 
equation 6 = p@ + a/@]*@ + /?Y% (p,a,,5 E C) with complex constants. The 
applicability of our integrator does not depend on the phases of these terms, whence 
it should be applicable also to the CGL equation in general. We just have to take 
into account that [@I is not constant during the evolution under the nonlinear term if 
Rep. 01 # 0. In that case the in+:gration of V involves solving the easy differential equation 
d)@12/dt = 2(Rep 1 @ 1 2  + R e a  [@I4). 
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